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I.  INTRODUCTION AND FORMULATION OF THE PROBLEM 

Adiabatlc shear is the name given to a localization phenomena that is 
important in many problems involving high rate deformation of solids.  In 
the last five years or so there has been strong interest in the theoretical 
aspects of the subject. Clifton, et al.1 have listed and briefly described 
more than a dozen papers on rapid shearing deformation in the recent liter- 
ature, as well as several of the earlier pioneering works.  However, there 
still appears to be a need to define a theoretically complete framework for 
the phenomenon and to find and examine dynamic solutions within such a 
framework.  This paper summarizes our work to date in attempting to fill 
that need. 

A general theory of therraoplasticity, due to Green and Naghdi,2 has 
been taken as the starting point.  In their theory, which is rate independ- 
ent, plastic strain and work hardening are modeled as internal variables 
controlled by evolutionary equations.  In this paper those general features 
are retained, but in addition the yield function is taken to depend on 
plastic strain rates, as well as stress and temperature, in a manner simi- 
lar to that used by Rubin3 and Drysdale.4 This combination is completely 
self consistent in a thermodynamic sense and allows for smooth and contin- 
uous transitions between elastic and viscoplastic states.  Details will be 
given elsewhere, Wright and Batra.5 and only a summary of the equations are 
given here. 

Figure 1 shows a block of material lying between Y = -H and Y = +H and 
undergoing only horizontal motion in the X direction. This motion is vol- 
ume preserving and may be written as 

x = X + u(Y,t) , 

y = Y , (1) 

z = Z . 

1i?.   J.   Clifton,   J.   Duffy,  K.  A.   Hartley,  and T.   G.  Shawki,   "On Critical Con- 
ditions for Shear Band Formation at High Strain Rates, " Scripta Metallurgiaa 
18,  p.   443-448   (1984).   

2A.  E.   Green and P.  M.  Naghdi,   "A General Theory of an Elastic-Plastic 
Continuum," Arch.  Rat.  Mech.  Anal.   18,  p.   252-281   (1965). 

3M.  B.  Rubin,   "A Thermoelastio-Viscoplastic Model with a Rate-Dependent Yield 
Strength, " J.   Appl.   Mech.   49,  p.   305-211   (1982). 

hW.   H.  Drysdale,   "The Theory of Plasticity with Rate Effects, " ARBRL-TR-02559, 
ADA Ul  102,  May 1984,  Battutlc RMtaJith IcboKatoKy,  Aberdeen Proving GA.ou.nd,  MP, 

5T.   W.   Wright and R.   C,   Batra,   "Adiabatic Shear in Simple and Dipolar Mater- 
ials," to appear   (1985), 



The balance relations for raoraentura, energy, and entropy in the absence of 
body forces and external sources of heat may be written 

s,Y =  pu j 

PL)  = =  su,Y - q. 'Y i 

P T n - T T 'Y 
+ q^ 'Y 

> 0 

(2) 

In these equations s is the shear stress on the planes of constant Y, U is 
internal energy, q is heat flux due to conduction, T is temperature, n is 
specific entropy, and P is density, which is constant. The dot and the 
comma indicate differentiation with respect to time t and the material 
coordinate Y respectively, and it is assumed in the usual way that shear 
strain may be decomposed into elastic and plastic parts 

Y = u,Y = Ye + Yp • (3) 

With K taken to be a measure of work hardening, it is assumed that a yield 
or loading function f exists such that 

fCs,T,Yj = < , (O 

where f is monotonically decreasing in y , and the criterion for elastic or 
plastic loading is simply 

f(s,T,0) < K , elastic , 

f(s,T,0) > K , plastic . 

If plastic deformation is occurring, the sign of y  is taken to be the same 

as that of s, and its absolute value may be found uniquely from (4) because 
of the assumed monotonicity of f.  If plastic deformation is not occurring, 
then of course y = 0. The situation is shown schematically in Figure 2. 

P 
When the stress and temperature lie in the cross hatched region, deforma- 
tion is wholly elastic, but when they lie outside, the plastic strain rate 
is nonzero. Furthermore, the farther outside that the point (s,T) lies, 
the larger the absolute value of y .  Equation (U) is similar to the yield 

functions used by Rubin3 and Drysdale.  but the treatment that follows here 
is somewhat different from either of theirs. The work hardening parameter 
is assumed to obey the following evolutionary equation. 

(5) 



K = M Yp • (6) 

M is a constitutive function that depends only on s, T and K. 

II.  CONSTITUTIVE FUNCTIONS 

For computational purposes specific constitutive functions have been 
chosen as follows. 

1   2 (n"n0)/cv 
pU= 2^e + pT0Cv(e        -   V   ' 

(7) 
k T, 

y 

where y is a constant shear modulus, T. is a reference temperature, c is 
U V 

the specific heat at constant volume, and k is the thermal conductivity. 
Standard thermodynaraic arguments show that 

(n-n0)/c 
s = y Ye ,  T = T0e    

U  V , (8) 

so that the elastic response is linear, and there is no thermoelastic 
effect. 

It is further assumed for a slow isothermal reference test at temper- 
ature T0 that s = K = ic(e), where e is the plastic strain in that case, 

and that whatever the rate of deformation, K depends only on the plastic 
work done.  Thus it follows that 

W = K e = SY  , 
P rP 

(9) 

u   I die M  = — -|— S , 
K de 

die Where dz  may be exPressed as a function of K.  TO complete the constitutive 

assumptions, the yield function and ic(e) were chosen as follows. 

^This scheme may he readily generalized to multidimensional states or to the 
case of dipolar stresses,   Wright and Batra.^ since it turns cut that all 
■plastic rates may he related hy a single proportional factor,  as in Green and 
Naghdi2 and Green,  Mclnnis,  and Naghdi.6    Then it is the proportional factor 
that is determined from the analog of (4)  rather than  y itself. 

^A.   E.   Green,  B.   C,  Mclnnis,  and P.  M.   Naghdi,   "Elastic-Plastic Continua with 
Simple Force Dipole," Int.   J.   Eng.   Sci.   6,  p.   373-394   (1968). 



|s| = K(1 - ae)(l + b Yp)  . 

ic(e) = K (1 + —) 
u    e0 

(10) 

where 0 = T - T .  It will be recognized that the viscoplastic effect in 

the present case comes from a multiplicative overstress factor, although 
(4) is sufficiently general to include an additive overstress or many other 
possibilities. 

III.  NONDIMENSIONAL VARIABLES AND HOMOGENEOUS SOLUTIONS 

With nondimensional variables defined by 

Y = HY , u = Hu , s = Kns , 0 = -5- (T 0       pc 
(11) 

t = T—t,Y=Y.<= K0< » e = e , 
Y0 

where Yn is the average strain rate imposed in the problem, the complete 

equations in nondimensional form become 

u2.2 
pH Y0 •• 

Momentum:  s,v =   u , Y    K0 

k 
Energy:  0 =  j e'YY + KZ   ' 

Constitutive:  s = ^ (Y - Y^) . r.-. 
Q V <*■*•} 

,n   e ^.n 
K = (1 + —)  . 

£0 

<k-s  Yp( = Wp) , 

Yield Surface:  |s| = (1 - -—0)(1 + H-QY-) <> 

10 



where the overbars have been dropped, and (12), is subject to (5).  There 

are two relative length scales implicit in (12), namely a thermal length 

V— , and a viscous length JJ ■%]— .  In addition there are seven 
pVoH 

other nondimensional parameters in (12) which are required to define the 
mass, elastic modulus, thermal softening, work hardening, and rate 
hardening of the material. 

In  a homogeneous deformation the true displacement field has the form 
u = YnYt, where Yn is a constant strain rate, or with nondimensional varia- '0 0 
bles u = Yt, and nondimensional values of s, 6, Y > K. and e depend only on 

time.  For this case the equations become ordinary differential equations 
with initial values 

s(0) = 1, 9(0) = 0, e(0) = 0 , (13) 

where time is counted from the first onset of plastic flow, and v  is to be 
P 

found from (12)g.  Equation (12)  is satisfied identically, and (12)  with 

(12k substituted for k can be integrated immediately to give 6(e).  The 

remaining two equations may now be written as the autonomous pair 

^ = 7~ (1 " ^J ' s^ = l   ' 

syr 

(i - !-)n 

eo 

e(0) - 0 , 

(14) 

where 

eu)-^  Ci^)1*"-!   . 

P  by. 3.IC 

(1+ —)"(!  9(e)), 
En       PC    ^    J' 
0 V 

(15) 

Although solutions to (14) cannot be given explicitly, some of their fea- 
tures can be described qualitatively^  in particular, for the constitutive 
and yield functions chosen here, s always has a simple maximum at a criti- 
cal value of Y» 

the exact value of which is influenced by work hardening, 
heat capacity, rate sensitivity, thermal softening, and yield strength, the 

11 



first three tending to retard the peak, the last two to advance it. Figure 
3 shows the homogeneous stress strain response for one particular choice of 
nondimensional parameters, as follows: 

.2 2 
PY0H -5 
—-— = 3.928 x 10 

K0 u2- 
pCvH Y0 

3.978 x 10 
aKr 

pc 
0.4973 , 

]L- = 240.3 , n = 0.09 , en 
Ko 0 

0.017 , Y0b = 5 x 10' m 0.02, 

IV.  RESPONSE TO PERTURBATIONS 

Other analyses (e.g.. Burns7 or Shawki, et al.8)have indicated that if 
a small perturbation is added to the homogeneous response, its amplitude 
will begin to grow once the peak stress for homogeneous deformation has 
been passed.  The perturbation could be applied to any of the field varia- 
bles, but in this paper a small symmetric temperature bump was added at the 
center of the slab just before the peak stress, and the problem was 
restarted as an initial/boundary value problem, the material parameter 
remaining exactly as before.  The boundary values are 

v(±l.t) = ±1, 'Y (±l,t) = 0 (16) 

so that the average strain rate in the strip [-1,+1] is maintained, and the 
strip is adiabatic overall.  The problem was solved by the finite element 
method; for details, see Wright and Batra.   Some of the principal results 
are shown in Figures 4, 5, and 6. 

Figure 4 shows a cross section of the temperature at various times 
after introduction of the perturbation.  On this scale the peak in the 
initial temperature itself does not show since it is only 0.02 higher than 
the surrounding ambient value, which is reached at Y = ±0.1 on either side 
of the central peak.  Only half of the central part is shown since the 
profile is symmetric and remains flat on out to ± 1 .  Cross sections of 
plastic strain rate also show a strong central peak at late times. 

Figure 5 shows the stress, plastic strain rate, and temperature as 
functions of time at a point very near to the center of the band. The 
plastic rate begins a slow increase, which is actually exponential at 

7T.   J.  Burns,   "Approximate Linear Stability Analysis of a Model of Adidbatia 
Shear Band Formation," Sandia Report SAND83-1907,   October 1983,   Sandia 
National Laboratories,  Albuquerque,  NM. 

8T.   G.  Shawki,  R.  J.   Clifton,  and G. Maj'da,   "Analysis of Shear Strain Localiza- 
tion in Thermal Visoo-Plastio Materials," Brown University Report ARO DAAG29- 
81-K-0121/3,   October 1983,  Providence, RI. 

12 



first, and then after a fairly long run-in time, it accelerates rapidly, 
goes over an abrupt peak, and finally begins a slow decline.  The temper- 
ature begins with a slow but steady increase and then rises very rapidly at 
the end, whereas the stress begins with a slow decrease and then drops 
rapidly at the end.  It is during the period of most rapid change that the 
shear band takes recognizable shape. 

Figure 6 shows the same three functions as in Figure 5, but at a point 
near the boundary.  Here the plastic strain rate decreases slowly at first, 
and after the run-in time, it drops sharply and finally makes a rapid but 
smooth transition to zero.  Since plastic work ceases towards the end, the 
temperature arrives at a plateau, but the stress continues to drop on into 
the elastic region.  Comparison of the stress curves shows that, although 
central and edge stresses are nearly equal during the run-in time, the edge 
stress actually drops later than the central stress.  Thus the curves 
indicate that the stress in the center drops rapidly because of thermal 
softening, but the stress at the edge drops because of momentum transfer. 
Since the average strain rate is constant, the stress/time plot may be 
interpreted as a stress/average strain plot.  This is shown in Figure 3. 

13 
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